domingo, 14 de febrero de 2010


By using DWDM as a transport for TDM, existing SONET equipment investments can be preserved. Often new implementations can eliminate layers of equipment. For example, SONET multiplexing equipment can be avoided altogether by interfacing directly to DWDM equipment from ATM and packet switches, where OC-48 interfaces are common (see Figure 1-10). Additionally, upgrades do not have to conform to specific bit rate interfaces, as with SONET, where aggregation of tributaries is locked into specific values.

Optical signals become attenuated as they travel through fiber and must be periodically regenerated in core networks. In SONET/SDH optical networks prior to the introduction of DWDM, each separate fiber carrying a single optical signal, typically at 2.5 Gbps, required a separate electrical regenerator every 60 to 100 km (37 to 62 mi). As additional fibers were "turned up" in a core network, the total cost of regenerators could become very large, because not only the cost of the regenerators themselves, but also the facilities to house and power them, had to be considered. The need to add regenerators also increased the time required to light new fibers

The upper part of Figure 1-11 shows the infrastructure required to transmit at 10 Gbps (4 x OC-48 SR interfaces) across a span of 360 km (223 mi) using SONET equipment; the lower part of the figure shows the infrastructure required for the same capacity using DWDM. While optical amplifiers could be used in the SONET case to extend the distance of spans before having to boost signal power, there would still need to be an amplifier for each fiber. Because with DWDM all four signals can be transported on a single fiber pair (versus four), fewer pieces of equipment are required. Eliminating the expense of regenerators (RPTR) required for each fiber results in considerable savings.

A single optical amplifier can reamplify all the channels on a DWDM fiber without demultiplexing and processing them individually, with a cost approaching that of a single regenerator. The optical amplifier merely amplifies the signals; it does not reshape, retime or retransmit them as a regenerator does, so the signals may still need to be regenerated periodically. But depending on system design, signals can now be transmitted anywhere from 600 to thousands of kilometers without regeneration.

In addition to dramatically reducing the cost of regenerators, DWDM systems greatly simplify the expansion of network capacity. The only requirement is to install additional or higher bit-rate interfaces in the DWDM systems at either end of the fiber. In some cases it will only be necessary to increase the number of lambdas on the fiber by deploying existing interfaces, as shown in the upper half of Figure 1-12. The existing optical amplifiers amplify the new channel without additional regenerators. In the case of adding higher bit-rate interfaces, as shown in the lower half of Figure 1-12, fiber type can become a consideration. See the "Optical Fibers" section on page 2-5 for an overview of types of optical fibers and their uses.

Although amplifiers are of great benefit in long-haul transport, they are often unnecessary in metropolitan networks. Where distances between network elements are relatively short, signal strength and integrity can be adequate without amplification. But with MANs expanding in deeper into long-haul reaches, amplifiers will become useful.

Hernandez Caballero Indiana M. CI: 15.242.745
Asignatura: SCO

No hay comentarios:

Publicar un comentario